

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

Course Title	ADVANCED POWER SYSTEM ANALYSIS							
Course Code	EE601	No. of Credits	03					
Department	EEE	Faculty	Dr. Sishaj P Simon					
Pre-requisites Course Code	Power System Analysis, Matrix manipulations, Alternating Machines and Network Analysis							
Course Coordinator(s) (if, applicable)	Dr. Shelay Sathyan							
Other Course Teacher(s)/Tutor(s) E-mail		Telephone No.	0431-2503265					
Course Type	√ Co	ore course	Elective course					
COURSE OVERVIEW			And					
Students get exposure will be exposed to Solv analyze the faults in th	e ac and dc e power syst cept of stat	load flow for single and th tem networks. They will lea te estimation in power sy	emponents and apply them. Further the here phase systems. Students will able to arn to apply the concepts of optimization estem and the role of statistics in state					

COURSE OBJECTIVES

To perform steady state analysis and fault studies for a power system of any size and also to explore the nuances of estimation of different states of a power system.

COURSE OUTCOMES (CO)

Course Outcomes		Aligned Programme Outcomes (PO)													
Upon completion of the course, the students will be															
able to	со	РО	РО	РО	РО	РО	РО	РО	РО	РО	ро	ро	РО	РО	РО
1. Construct models of power system components and apply	no,		2	3	4	5	6	7	8	v	10	11	12	i)	14
them.	L,	н	н	м	м	м	м	м	м	м	м	м	м	м	м
2. Solve ac and dc load flow for single and there phase	2	н	н	н	н	н	н	н	н	н	н	Н	м	м	м
systems.	3	н	н	н	н	н	Ĥ	н	н	н	н	м	М	м	м
3. Analyse the faults in the power system networks.	4	н	н	н	н	н	н	н	н	н	н	н	м	M	M
4. Apply the concepts of	5	м	м	н	н	н	н	н	н	н	н	н	н	н	н
optimization in power system. 5. Explain the concept of state estimation in power system										•					

state es	timation.								
	COUF	RSE TEACI	HING AND LEARN	ING ACTIVITIES					
S.No.	Week		Mode of Deliver						
1	Weeks 1 to 4 (8 contact hours)	Network phase mo transmissi Incidence elimination matrix	Lecture C&T/ PPT or any suitable mode						
2	Weeks 4 to 7 (7 contact hours)	and three	analysis - Newton pupled method, AC-Do phase methods – S s and extension to r C systems.	Lecture C&T/ PPT or any suitable mode					
3	Week 8 (1 contact hours)	numerical examples/ problem solving Group work (exercise)							
4	Weeks 8 to 10 (6 contact hours)	unbalance	idies - Analysis d d three phase faults - cuit faults – Open circ	Lecture C&T/ PPT or any suitable mode					
5	Weeks 11 to 12 (5 contact hours)	System op systems - transmissio function - solution by	Lecture						
6	Week 13 (1 contact hours)	numerical e	Group work						
7	Weeks 13 to 14 (6 contact hours)	- Structure	mation – Method o Errors – Estimates - e and formation of em state estimation.	(exercise) Lecture C&T/ PPT or any suitable mode					
			ode of Assessmer						
S.No.	Mode of Asses	% Weightage							
1	1 st Mid Seme Examination (wr (1 st and 2 nd U	itten test)	8 th Week	Duration 60 Minutes	20				
2	2 nd Mid Seme Examination (wr (3rd and 4 th U	itten test)	13 th Week	60 Minutes	20				
3	Take Home / Tea	am Task	3 rd to 13 th week	B rd to 13 th week along with the course					
4	Compensation (Written Test (1 st to 4 th Ur)	16 th week	60 Minutes	20				

Note:

- 1. Attending all the assessments (Assessment 1-3 and 5) are MANDATORY for every student.
- 2. If any student is not able to attend Assessment-1 (1st Mid Sem) / Assessment-2 (2nd Mid Sem) due to genuine reason, student is permitted to attend the Assessment- 4 (Compensation test) with 20% weightage (20 marks).
- 3. In any case, retest will not be considered as an improvement test.

ESSENTIAL READINGS :

Reference Books:

- 1. Grainger, J.J. and Stevenson, W.D., 'Power System Analysis', Tata McGraw Hill, New Delhi, 2003.
- 2. HadiSaadat, 'Power System Analysis', Tata McGraw Hill, New Delhi, 2002.
- 3. Arrillaga, J and Arnold, C.P., 'Computer Analysis of Power Systems', John Wiley and Sons, New York, 1997.
- 4. Pai, M.A., 'Computer Techniques in Power System Analysis', Tata McGraw Hill, New Delhi, 2006.

COURSE EXIT SURVEY

Shall be obtained at the end of the course

COURSE POLICY

ATTENDANCE

- 1. Attendance will be taken by the faculty in all the contact hours. Every student should maintain minimum 75 % physical attendance in these contact hours to attend the end semester examination.
- 2. Any student, who fails to maintain 75% attendance need to appear for the retest. Student who scores more than 50 % marks in the compensation test will be eligible for attending the end semester examination.
- 3. Students not having 75% minimum attendance at the end of the semester and also fail in compensation test (scoring less than 50%) will have to RE-DO the course.

ACADEMIC HONESTY & PLAGIARISM

1. Copying in any form during assessments is considered as academic dishonesty and will attract suitable penalty.

FOR APPROVAL	
Course Faculty CC-Chairperson	HOD_