NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

Department of Electrical and Electronics Engineering

	COURSE OUTL	INE (PART-I)	建设计学 加度。2015年			
Course Title	Circuits and Digital Labor	ratory				
Course Code	EELR10	No. of Credits	2			
Session	August 2022	Section	A			
Faculty	Vidya .P. Janaki	Department	EEE			
0.000 10 11	C.H. Chandrasekhar					
Office Email	407120010@nitt.edu 407121004@nitt.edu	Telephone No	9488789257, 9494622603			
Pre-requisites	Co-requisite: EEPC10 Cir	rcuit Theory				
Course Code	D. C.M					
Name of Course Coordinator	Dr.S.Moorthi					
Official Email	srimoorthi@nitt.edu	Telephone numb	er 9443210281			
Course Type	Core course	Elective cou				
Syllabus		-				
List of Experiments:						
 Characteristics o 	f CB and CE configuration of	BJT.				
 Verification of T 	hevenin and Maximum Powe	r Transfer Theore	m.			
 Verification of S 	uperposition Theorem.					
Verification of Kirchhoff's Current and Voltage law.						
 Transient charac 	teristics of R-L series circuit.					
 Transient charac 	Transient characteristics of R-C series circuit.					
 Transient charac 	teristics of R-L-C series circu	it.				
 Design of Multip 	olexer and Demultiplexer, enc	oder and decoder				
 Design of magni 	-					
 Design of 4 bit p 						
-	onous sequential logic circuit	'S				
	ronous sequential logic circu					
Mini Project	nonous sequential logic en eu	113				
- William Troject						
COURSE OBJECTIVE						
	nd analyze the basic theorems					
	analyze series & parallel circu	iits and measurem	ent of single and three-phase			
power. • Understand and a	analyze different applications	of diode and char	acteristics of Transistor			
	pasics of digital design	of aloae and char	acteristics of Transistor.			
COURSE OUTCOMES						
	course the students will be ab	le to	Aligned Programme Outcomes (PO)			
1. Verify the network	theorems and operation o	f electrical and	PO1,PO2,PO3,PO4,PO5,PO6,			
electronic circuits. PO7,PO8,PO9,PO10,PO11,PO						
	riate equipments for measuri		12,PO13,PO14.			
	the same for different circuit					
	I report on the experiments ca	arried out				
Design basic digital	logic circuits					

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE PLAN (PART-II)

COURSE OVERVIEW

This course aims to provide practical and hands-on experience in the implementation of electric, analog and digital circuits.

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Week	Topic	Mode of Delivery
1,	Week 1	Demonstration and use of Bread board, Variable regulated power supply, Function generator, Digital Storage Oscilloscope, Multi meters, etc.	Laboratory demonstration
2.	Week 2	Verification of Kirchhoff's Current and Voltage law.	Conducting experiment in the Laboratory
3.	Week 3	Verification of Thevenin and Maximum Power Transfer Theorem.	
4.	Week 4	Verification of Superposition Theorem	
5.	Week 5	 Transient characteristics of RL series circuit. Transient characteristics of RC series circuit. Transient characteristics of RLC series circuit. 	
7.	Week 6	Design of Multiplexer and De Multiplexer, Encoder and decoder	Conducting experiment in the Laboratory
8.	Week 7	Design of Magnitude Comparator	-
9.	Week 8	Design of 4-bit Priority encoder	
10.	Week 9	Characteristics of CB configuration of BJT	
11.	Week 10	Characteristics of CE configuration of BJT	
12.	Week 11	Design of Mod-n Counter	
13.	Week 12	Design of 3-bit up/down counter	
14.	Week 13	Design of 3-bit Asynchronous counter	
15.	Week 14	Mini-Project	

COURSE ASSESSMENT METHODS

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1.	Internal assessment	During regular	3 hours in each	40 %
	(Observation+Record)	laboratory classes	lab class	
2.	Mid Sem Test 1	Week 6	1 hour	20 %
3.	Mid Sem Test 2	Week 11	1 hour	15 %
4.	Final Assessment	Week 15		25%

ESSENTIAL READINGS: Textbooks, reference books Website addresses, journals, etc

1. Text / references mentioned in EEPC10 Circuit Theory course.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- Feedback from the students during class committee meetings
- Anonymous feedback through questionnaire

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

ATTENDANCE

- Every student should maintain minimum 75% physical attendance. Students not meeting this criteria will have to RE DO the course.
- Students who have missed the regular lab class should get the prior permission for attending compensation lab class.

ACADEMIC HONESTY & PLAGIARISM

- 1. Possessing of mobile phones, carrying bits of paper, talking to other students and copying assessment from others is considered as dishonesty.
- 2. Zero marks will be awarded to offenders for copying the simulations and for the one who shard the simulations.
- 3. Preventing or hampering other students from pursuing their academic activities is also considered as academic dishonesty.
- 4. Any evidence of such academic dishonesty will result in the loss of marks on that assessment. Additionally, the names of those students so penalized will be reported to the class committee chairperson and HoD for necessary action.

ADDITIONAL COURSE INFORMATION

CORRESPONDENCE

 All the students are advised to check their NITT WEBMAIL regularly. All the correspondence (schedule of classes/ schedule of assessment/ course material/ any other information regarding this course) will be done through their webmail.

Queries (if required) may be emailed to me / contact me during the lab sessions for any clarifications.

FOR SENATE'S CONSIDERATION

Course Faculty

CC-Chairperson

HOD