

Department of Computer Science and Engineering National Institute of Technology, Tiruchirappalli

1. Course Outline		2					
Course Title	DIGITAL SYSTEMS	S DESIGN LABORA	TORY				
Course Code	CSLR32	nan nagarahan karang ang karang ka					
Programme, Department & Section	B.Tech. – CSE B section	No. of Credits	3				
Co-requisites Course Code		Faculty Name	B. Shameedha Begum				
E-mail	shameedha@nitt.edu	Telephone No.	0431 - 2503215				
Course Type	LR						
Session in Academic Year	July – November 2022 Session (Odd Semester)						

2.Course Overview

- This covers design and implementation of Digital circuits.

3. Course Objectives

- To develop programs in Hardware Description Language
- To design and implement synchronous sequential, asynchronous sequential circuits
- To be familiar with basic combinational and sequential components used in the typical
- data path designs

4. Course Outcomes (CO)

- Ability to design synchronous sequential circuits using basic flip-flops, counters, PLA, PAL
- Ability to design and develop basic digital circuits
- Ability to debug digital circuits

	Aligned Programme Outcome (PO)							
5. Course Outcomes (CO)	PO- 1	PO- 2	PO- 3	PO- 4	PO- 5	PO- 6	PO- 7	PO- 8
Ability to design synchronous sequential circuits using basic flip-flops, counters, PLA, PAL	S	М	S	S	S	S	В	М
Ability to design and develop basic digital circuits	S	S	S	S	S	М	В	М
Ability to debug digital circuits	М	М	S	M	S	М	В	М

B = 0.0

S.No	Title	Туре		Mode of delivery				
		L	Т	C&T	РРТ	VL/VC	DEMO	
1	Study of Logic Gates	\checkmark			I - Loss I - Bart and I - I - I			
2	Design of Adders						\checkmark	
3	Design of Subtractors						\checkmark	
4	Conversion of Binary to Excess-3						\checkmark	
5	Design of Encoders and Decoders						\checkmark	
6	Parity Generator and Checker						\checkmark	
7	Design of a Multiplexor						\checkmark	
8	Design of a Magnitude Comparator						\checkmark	
9	Design of a Demultiplexor						\checkmark	
10	Implementation of T, JK Flip-flops						\checkmark	
11	Conversion of Flip Flops						\checkmark	
12	3-Bit Synchronous and Asynchronous Counter						\checkmark	
13	Design and Implementation of Shift Registers						\checkmark	
14	HDL Implementation of 4:1 Multiplexor						\checkmark	
15	HDL Implementation of 4-Bit Full Adder						\checkmark	
16	HDL Implementation of 4-Bit Ripple Counter						\checkmark	

7. Course Assessment Methods							
Sl. No.	Mode of Assessment	Week / Date	Duration	Marks			
1	Continuous Assessment	Every Lab Session	3 hours	20			
2	Record	Every Lab Session	-	10			
3	Model Exam	6 th Week	3 hours	45			
4	End Semester Exam	As per schedule	3 hours	25			
Total							

8. Essential Readings (Textbooks, Reference books, Websites, Journals, etc.)

- 1. Morris Mano and Micheal D. Ciletti, "Digital System Design", 5th Edition, PHI, 2012
- 2. Samir Palnitkar, "Verilog HDL", 2nd Edition, Pearson Education, 2003

For Senate's Consideration

Course Faculty

.8-8 C

HOD

Class Committee Chairperson

2