DEPARTMENT OF CIVIL ENGINEERING NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

	COURSE PLAN					
Name of the programme and specialization	M.Tech Civil Engineering					
Course Title	UNSATURATED SOIL MECHANICS					
Course Code	CE 822	No. of Credits	3			
Course Code of Pre- requisite subject(s)						
Session	Aug, 2023	Section (if, applicable)	Elective			
Name of Faculty	Dr. Jeevan Joseph	Department	Civil Engineering			
Email	jeevan@nitt.edu	Telephone No.	9619474630			
Name of Course Coordinator(s) (if, applicable)	Dr. K. Muthukkumara	n				
E-mail	kmk@nitt.edu	Telephone No.				
Course Type	Core course	Electiv	e course			

Syllabus (approved in BoS)

Stresses and strains in soils - stress, strain paths invariants - one-dimensional and isotropic compression of soils and idealisation; state boundary of compression of soils; stress paths and soil tests; critical state line and Roscoe surface; Drained and undrained planes; Critical state line for sands; Behaviour of over-consolidated soils and Hvorslev surface; Behaviour of soils before failure; Interpretation of index tests in the light of critical state concepts; Cam-clay models, Determination of critical state parameters. Identification and classification of expansive and collapsing soils, effective stress concepts, matric and osmotic suction, collapse, heave and strength characteristics of unsaturated soils, flow through unsaturated soils. Laboratory evaluation of swell pressure and swell potential, tests to evaluate collapse potential. Measurements of soil suction.

References

1. Jean-Louis Briaud, Geotechnical Engineering: Unsaturated and Saturated Soils, John Wiley & Sons, Inc., New Jersey, 2013.

2. Murray E.J, Sivakumar V., Unsaturated Soils: A fundamental interpretation of Soil behaviour, Wiley-Blackwell, 2010.

3. Ng C.W.W and Menzies B, Advanced unsaturated soil mechanics and engineering, CRC Press, 2019.

4. Lu, N. and Likos, W.J., Unsaturated soil mechanics, Wiley, 2004 (2)

5. Fredlund, D. J., Rahardjo, R., and Fredlund, M.D. Unsaturated Soil Mechanics in Engineering Practice, Wiley, 2012.

COURSE OBJECTIVES

1. To understand the basic mechanisms of soil under specific conditions.

2. To enhance the ability of relating the basic mechanisms of soil to behaviour of the s_{0il} under various loading conditions.

under various loading conditions. 3. To understand the application of the theory of elasticity and plasticity to characterize the soil behaviour.

soil behaviour. 4. To develop the understanding of soil behaviour and apply it to develop elasto-plastic models based on unsaturated soil conditions.

Course Outcomes	Al	igne	d P	rogi	ramı	ne (Duto	om	Pe /		
	а	b	С	d	е	f			5 3 (1	-0)-	
To demonstrate basic mechanisms behind index properties and tests on soil	Н	L	L		M	L	g	h	1	j	k
To relate behaviour of soils subjected to various loading and drainage conditions.	н	L	L	М	М	н					-
To apply theory of elasticity and plasticity to characterize the stress-strain behaviour of soils	н	М	н		М	Н	М	L	М	L	
To formulate basic elasto-plastic model based on Unsaturated soil mechanics like cam-clay	н	н	н	М	L	м	м	L	н	М	L
* a: Scholarship of Knowledge: b: Critical Thinking											

* a: Scholarship of Knowledge; b: Critical Thinking; c: Problem Solving; d: Research Skill; e: Usage of modern tools; f: Collaborative and Multidisciplinary work; g: Project Management and Finance; h: Communication; i: Life-long Learning; j: Ethical Practices and Social Responsibility, k: Independent and Reflective Learning

COURSE PLAN - PART II

COURSE OUTCOMES (CO)

COURSE OVERVIEW

The course is designed in such a way to impart the significance of application of unsaturated soil mechanics in contemporary engineering practises.

S.No.	Week/ Contact Hours	Торіс	Mode of Delivery Class room	
1.	Week 1	Stresses and strains in soils, stress, strain paths invariants		
2.	Week 2	one-dimensional and isotropic compression of soils and idealisation	Discussions Class room	
3.	Week 3	state boundary of compression of soils, stress paths and soil tests	Discussions Class room Discussions	
4.	Week 4	critical state line and Roscoe surface; Drained and undrained planes, Critical state line for sands;	Class room Discussions	
5.	Week 5	Behaviour of over-consolidated soils and Hvorslev surface; Behaviour of soils before failure	Class room Discussions	
6.	Week 6	Interpretation of index tests in the light of critical state concepts; Cam-clay models,	Class room	
7.	Week 7	Determination of critical state parameters. Identification and classification of expansive and collapsing soils,	Class room Discussions	
8.	Week 8	Effective stress concepts, matric and osmotic suction	Class room Discussions	
9.		Mid Semester Examination		

	Week 10	Collapse, heave and strength characteristics of	Class room Discussions
10.		unsaturated soils	Class room
11.	Week 11	Flow through unsaturated soils.	Discussions Class room
10	Week 12	Case study	Discussions
12.		Laboratory evaluation of swell pressure and swell	Class room Discussions
13.	Week 13	potential,	Class room
14.	Week 14	Tests to evaluate collapse potential.	Discussions Class room
15	Week 15	Measurements of soil suction.	Discussions
15	VA/aple 16		Class room Discussions
16	Week 16	Correlation of Suction and Engineering Properties	Discussions

COURSE ASSESSMENT METHODS (shall range from 4 to 6)

	Mode of Assessment	Week/Date	Duration	% Weightage		
S.No . 1	Assignment-1	3 rd Week of September 1 week time for submission		10		
2	MID SEM	3 rd Week of October	2 hr	30		
3	Case study	1st Week of November	10 min/person	20		
4	Compensation Assessment*	1 st Week of Dec	2 hour	30		
5	Final Assessment *	3 rd week December	3 hours	40		

*A minimum of 30 % for the Final assesment and a cumulative of 35 % (summing up all the mode of assesment) is mandatory for passing the subject. COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall

be assessed)

It is proposed to take feedback from the students, at the end of the semester to evaluate the execution of the course.

COURSE POLICY (preferred mode of correspondence with students, compensation assessment policy to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

- Mode of correspondence would be through Email and phone calls
- COMPENSATION ASSESSMENT POLICY
- Compensatory assessment shall be given for students providing genuine reasons (reported with in a weeks' time from the actual date of assessment) for their absentia during the regular assessments.
- Written examination for a time duration of 2 hr, covering the entire syllabus would be compensatory assessment policy for students missing Mid Semester.
- Students missing Assessment 1,2, and 3 may have to undergo the same assessment methodology scheduled in the actuals.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall be applicable for all the programmes.

ADDITIONAL INFORMATION

- The Course instructor would be available for discussions, if any, during office hours, at Room No:18; Civil Dept.
- Students are free to post any queries or clarifications to jeevan@nitt.edu.

FOR APPROVAL

Dr. Jeevan Joseph Course Faculty

8. Booler

Dr. S Saravanan CC-Chairperson

S T Ramesh

HOD