

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

DEPARTMENT OF CIVIL ENGINEERING

	COURSE PLA	N – PART I	
Name of the programme and specialization	M. Tech. – Structural Engineering		
Course Title	Stability of Structures		
Course Code	CE667	No. of Credits	3
Course Code of Pre- requisite subject(s)		aru-ura ya menike	
Session	July 2022	Section (if, applicable)	
Name of Faculty	Dr. Kamal Krishna Bera	Department	Civil Engineering
Email	kamal@nitt.edu	Telephone No.	+91 - 9301481280
Name of Course Coordinator(s) (if, applicable)	T BATTATTA A		Period State
E-mail		Telephone No.	
Course Type	Core course		

Syllabus (approved in Senate)

Stability concept –bifurcation buckling – methods of stability analysis – energy method – initial imperfection – large displacement analysis

Buckling of columns –Euler column –second order and fourth order equation method – Rayleigh-Ritz and numerical methods – Axially loaded column – Eccentrically loaded column – inelastic buckling

Buckling of frames – braced and unbraced frames – slope deflection equations, matrix method – effective length – alignment charts

Torsional and flexural-torsional buckling – torsion of thin walled open cross-section – flexural-torsional buckling of columns – lateral-torsional buckling of beams and beam-columns

Buckling of plates – Differential equation of plate buckling – critical load on plates for various boundary conditions – Energy method – Finite difference method

COURSE OBJECTIVES

- 1. This course deals with stability problems in structural forms and systems.
- It also takes care of special consideration for stability during design of structural elements.
- 3. It also aims for studying the buckling and analysis of structural elements.
- 4. To study the stability analysis problems in column, beam and beam-column.
- 5. To make students understand the phenomenon of buckling of frames and plates.

COURSE OUTCOMES (CO)	
Course Outcomes	Aligned Programme Outcomes (PO)
By the end of this course the students will be able to	
To understand stability of static and dynamic equilibrium.	• 100 000000000000000000000000000000000
To evaluate static stability criteria using stability equations.	-
3. To solve stability problems by energy method and finite difference method.	• (4.8)
To predict critical loads on structures.	-
5. To create discrete and continuous models to solve stability problems.	

		COURSE PLAN – PART II		
	RSE OVERVIEW			
This c	ourse deals with the st	ability problems in structural forms and systems	e.g., column, beam,	
beam-	-column, frame, plate.			
COUF	RSE TEACHING AND	LEARNING ACTIVITIES		
S.No.	Week/Contact Hours	Topic	Mode of Delivery (for all lectures)	
1	1 st week – 3 hours	Stability concept, methods of analysis, stability of simple mechanical system		
2	2 nd week – 3 hours	initial imperfection, large displacement analysis, Buckling of columns, Euler column		
3	3 nd week – 3 hours	second order and fourth order equation method, Axially loaded column		
4	4 rd week – 3 hours	Eccentrically loaded column, inelastic buckling		
5	5 rd week – 3 hours	beam-column		
6	6 th week – 3 hours	beam-column, Buckling of frames	Offline	
7	7 th week – 3 hours	Buckling of frames- matrix method		
8	8 th week – 3 hours	Buckling of plates – Differential equation of plate buckling		
9	9 th week – 3 hours	critical load on plates for various boundary conditions, Torsional and flexural-torsional buckling		
10	10 th week – 3 hours	lateral-torsional buckling of beams and beam-columns		
11	11 th week – 3 hours	Energy method		
12	12 th week – 3 hours	Numerical techniques to solve stability problem		

S.N o.	Mode of Assessment	Week/Date	Duration	% Weightage
1	Quiz	5 th week	30 min	15
2	Mid sem	7 th week	2 hrs	30
3	Assignment	9 th week	1 week	15
4	End sem	During end sem	3 hours	40

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

Feedback at the end of the semester for course evaluation as per institute norms. Feedback during classes also.

COURSE POLICY (preferred mode of correspondence with students, compensation assessment policy to be specified)

MODE OF CORRESPONDENCE (email/ phone etc)

Apart from interactions with the students in the regular class, extra classes will be conducted if required. Students can also contact the concerned faculty member (with prior appointment) as given below:

Dr. Kamal Krishna Bera; Email: kamal@nitt.edu; Mob: +91 - 9301481280

COMPENSATION ASSESSMENT POLICY

To be decided for the students with genuine reasons.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

MINIMUM PASS MARK POLICY

The Passing minimum mark: As per Institute norms.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- > Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall be applicable for all the programs.

FUR APPROVAL		
Bus	Malher	0.0
Course Faculty	CC-Chairperson	нор