NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

DEPARTMENT OF CHEMICAL ENGINEERING

Course Plan for CLPC 20 Mass Transfer II-July 2022 session

COURSE PLAN – PART I							
Programme	B.Tech. Chemical Engineering						
Course Title	Mass Transfer II						
Course Code	CLPC 20 No. Cred			4			
Course Code of Pre-requisite subject(s)	CLPC 18 Mass Transfer I						
Session	July 2022	Section	on	V Semester			
Name of Faculty	Dr.K.M.Meera S.Begum	Depa	rtment	Chemical Engg.			
Email	meera@nitt.edu Telej No.		phone	0431-2503109			
Name of other Coordinator(s) (if, applicable)							
E-mail	T	elephon	e No.				
Course Type	Core course						
Syllabus (approved i	•						
Syllabus approved in l	BOS for students admitted from	2019-2	0 onwards	5.			
 COURSE OBJECTIVES (i) To impart the basic concept of conventional mass transfer unit operations. (ii) To learn the equilibrium characteristics of two-phase mass transfer processes. (iii) To understand the hydrodynamics and modes of operations in mass transfer equipments. (iv) To develop the skill in the design and analysis of mass transfer equipments in process industries. 							
COURSE OUTCOMES (CO)							
Course Outcomes (CO)			Aligned Programme Outcomes (PO)				
 Upon completing the course, the student will be able to 1 Acquire sufficient knowledge in the concepts of mass transfer operations in Chemical Process industries. 2. Analyze the two-phase mass transfer processes and apply in Process industries. 			PO1, PO8, PO10, PO12 PO1, PO2, PO3, PO4, PO5, PO8, PO10 and PO12				
	um characteristics for the des	,	D10 and PO12 D2 and PO11				
4. Apply mathematic	cal skills in the process des	PO1, PO PO11	02, PO3, PO9 and				

COURSE PLAN – PART II

COURSE OVERVIEW

This course gives an insight into concepts of diffusional and unit operations of industrial applications. Outcome of this course will enable a student to apply the methodologies for various industrial chemical processing, biochemical processing and down streaming applications.

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Week/ Contact Hours	Торіс			
1.	Week 1	Introduction to Two phase mass transfer operations			
2.	Week 1	Fundamental laws to compute VLE data			
3.	Week 1	VLE phase diagrams-Effect of pressure and temperature			
4.	Week 1	Minimum and Maximum Boiling Mixtures-Phase diagrams			
5.	Week 2	Types of Distillation – Features			
6.	Week 2	Theory and design of Flash distillation			
7.	Week 2	Derivation of Rayleigh's expression-SD			
8.	Week 2	Problems solving in Flash and Simple distillations			
9.	Week 3	Tutorial Problems			
10.	Week 3	Theory and Calculation-Steam distillation	Chalk & Talk/PPT		
11.	Week 3	Low Pressure Distillation-Theory and applications			
12.	Week 3	Concept and Illustration of Azeotropic and Extractive Distillations			
13.	Week 4	Description and concept of Continuous fractionation			
14.	Week 4	Theory and design methodology for continuous fractionators			
15.	Week 4	Ponchon Savarit Design methodology			
16.	Week 4	Reflux and its significance on design			
17.	Week 5	Tutorial Problems to find minimum Reflux ratio			
18.	Week 5	Tutorial Problems solving to find design factors by Ponchon Savarit method			
19.	Week 5	K 5 Mc-Cabe Thiele design for continuous Fractionator			
20.	Week 5	Fenske's relation at Total Reflux condition			
		Assessment I			
21.	Week 6	Design principle of Open steam distillation			
22.	Week 6	Tutorial Problems – McCabe Thiele method			
23.	Week 6	Packed bed tower design	Chalk &		
24.	Week 6	Exercise Problems to calculate Packed bed tower height	Talk/PPT		
25.	Week 7	Introduction to LLE - Theory and phase diagrams			
26.	Week 7	Various representations of LLE diagrams on systems			
27.	Week 7	Design of Single stage extraction			
28.	Week 7	Multistage crosscurrent mode Partially miscible systems			

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

CHIRAPP							
29.	Week 8 Multistage crosscurrent mode - immiscible systems						
30.	Week 8	Design of countercurrent operation-Miscible systems					
31.	Week 8	Design of countercurrent - immiscible systems					
32.	Week 8	Exercise problems in crosscurrent and countercurrent mode					
33.	Week 9	Tutorial problems to find design factors					
34.	Week 9	Packed bed Extractor Design- LLE equipments-Types and Applications					
35.	Week 9	Introduction to Leaching Operation-Theory					
		Assess	nent II				
36.	Week 9	Solid li					
37.	Week 10	Various operative leaching methods					
38.	Week 10	Design methodology for countercurrent leaching					
39.	Week 10	Applications of leaching-Equipments					
40.	Week 10	Exercise Problems in leaching					
41.	Week 11	Introduction to Adsorption theory, Adsorbents and Applications					
42.	Week 11	Isotherms-Types and significance					
43.	Week 11	Adsorption hysteresis and Factors					
44.	Week 11	Design of single stage Adsorber					
		Compe	ensation Assessment		_		
45.	Week 12	Multistage adsorber design- Cocurrent mode					
46.	Week 12	Multistage adsorber design-Countercurrent mode					
47.	Week 12	Problems solving for Practice					
48.	Week 12	Tutoria	Chalk & Talk				
		Final A	ssessment				
	COUR	SE ASSI	ESSMENT METHODS (shall ra	ange from 4 to 6)			
S.No.	Mode of Assessment		Week/Date	Duration	% Weightage		
1	Assessment I (written test)		After 5 th week	1 hour	20%		
2	Assessment II (written test)		After 9 th week	1 hour	20%		
3	Assessment III – (Assignment)		During the Course	-	20 %		
	CPA Compensation Assessment*		After 11 th week	1 hour	20%		
4	Final Assessment**		At the end of course	2 ¹ / ₂ hours	40%		
grounds		n of med	sentees in any I and II assessme lical certificate and with the dec guidelines.				

ESSENTIAL READINGS : Textbooks, reference books Website addresses, journals, etc *Text Books:*

- 1. R. E. Treybal, "Mass Transfer Operations", 3rd Edn., McGraw Hill Book Co., New York, 1981.
- 2. N. Anantharaman and K.M.Meera Sheriffa Begum, "Mass Transfer Theory and Practice", Printice Hall of India Pvt. Ltd., New Delhi, 2013.
- 3. A.S. Foust, "Principles of Unit Operations", 2nd Edn., Wiley & Sons, New York, 1980.

Reference Books:

- 1. M. Coulson and J. F. Richardson, "Chemical Engineering.", Vol II, 5th Edn., Pergamon Press, New York, 2002.
- C. J. Geankopolis, "Transport Processes in Chemical Operations", 4th Edn., Prentice Hall of India, New Delhi, 2004.
- 3. W. L. Mccabe, J. C. Smith and P. Harriot, "Unit Operations in Chemical Engg.",7th Edn. McGraw Hill Book Co., New York, 2004.

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

- 1) Feedback will be collected during the class committee meetings and one at the end of course completion.
- 2) Suitable mapping of COs with POs will be made and attainment will be calculated.

COURSE POLICY (preferred mode of correspondence with students, policy on attendance, compensation assessment, academic honesty and plagiarism etc.)

MODE OF CORRESPONDENCE (email/ phone etc)

Email: meera@nitt.edu

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- ▶ 75% attendance in course is mandatory.
- Students with less than 65% attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

COMPENSATION ASSESSMENT

One Compensation assessment will be conducted only for absentees in Assessment I or Assessment II under genuine Medical issues.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, copying from others during an assessment will be treated as punishable dishonesty.
- Zero mark to be awarded for the offenders. For copying from another student, both students get the same penalty of zero mark.
- The departmental disciplinary committee including the course faculty member, PAC chairperson and the HoD, as members shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

ADDITIONAL INFORMATION

NIL

FOR APPROVAL

Konz

Course Faculty: Dr.K.M.Meera S. Begum

som.

CC-Chairperson: Dr.T.Sivasankar

HOD: Dr.P. Kalaichelvi (Approved by CC Chairman and HOD)