DEPARTMENT OF COMPUTER APPLICATIONS NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

	COURSE PLAN	N – PART I	
Name of the programme and specialization	Master of Computer Applications		
Course Title	Operating Systems		
Course Code	CA714	No. of Credits	3
Course Code of Pre- requisite subject(s)	CA715		
Session	January 2022	Section (if, applicable)	Α
Name of Faculty	Dr. Selvakumar K	Department	Computer Applications
Email	kselvakumar@nitt.edu	Telephone No.	0431-2503733
Name of PAC Chairman	Dr. B. Janet		
E-mail	janet@nitt.edu	Telephone No.	0431-2503741
Course Type	Core course		

Syllabus (approved in BoS)

Module 1:

Operating System concept- OS Structure Services-System calls Process management-Process Concept-Operations on process-Cooperating processes- Inter-process communication-Process scheduling-Scheduling algorithms-Threads- Multithreading models.

Module 2:

Process synchronization- critical-section problem Synchronization hardware Semaphores Classic problems of synchronization critical regions Monitors Deadlock-Deadlock characterization Methods for handling deadlocks Recovery from deadlock.

Module 3:

Memory management-Buddy system-Paging-segmentation-Virtual Memory Demand paging- Page replacement algorithms Allocation of frames Thrashing-Working set model.

Module 4:

Files and Directories - Files System structure- Implementation File allocation methods-Free space management- Virtualization Containers.

Page 1 of 5

I/O systems I/O interface Kernel I/O subsystem. Disk scheduling algorithms- Disk management-Swap space management.

Module 6:

Protection and security -Case Study-Linux, Windows, Mac OS and Mobile OS.

REFERENCES:

- 1. Silberschatz, Galvin and Gagne, "Operating System Concepts", 9th Edition, Jhon Wiley & Sons Inc. 2013.
- 2. Andrew S. Tanenbaum, Modern Operating Systems, 4th Edition, Prentice-Hall of India, 2015.
- 3. SibsankarHaldar, Alex A.Aravind, Operating systems, Pearson Education, 2009.

COURSE OBJECTIVE(S)

To introduce basic concepts and features of OS with a case study on different operating systems

COLIDAT	CUTOCUEO	1001
COURSE	OUTCOMES	(CO)

Course Outcomes	Aligned Programme Outcomes (PO)	
Students will be able to:		
1. Use systems calls for managing processes, memory, and the file systems	I, II, III,IV	
2. Be familiar with various types of operating system structures for examples Linux, Windows, Mac OS and Mobile OS.	I, II, III,IV, V, VII, IX	
3. Explore the functionalities of the operating systems with numerical examples.	I, II, III,IV, V, VII, IX, X, XII	

COURSE PLAN - PART II

COURSE OVERVIEW

This subject introduces the functionality of an Operating System, the issues in the design of an OS, Different approaches to create the OS, and more importantly the abstraction of all underlying systems. Also, it conveys the System calls, their interfaces, API's are introduced in this module. The important isolation via the use of kernel and user modes is introduced. The module also covers processes, threads and how they are managed. Scheduling of processes, the algorithms for the same, design decisions to pre-empt or not a running process are important concepts discussed. Deadlocks, when processes try to access shared resources & mechanisms to break and avoid deadlocks, are discussed. Moreover, Main Memory, its hierarchy, use of caches are introduced in this module. The need for virtual memory concepts, TLB hardware, and the use of pages and management of the pages are highlights of the topics discussed. Finally, Important concepts of security of the OS, its protection, policies for the same, authentication models is introduced in this module. OS performance measurements and related issues are discussed.

S.No.	Week/ Contact Hours	Topic	Mode of Delivery	
1	Week 1 (3 Classes) Class II: Operating System concept Class III: OS Structure Services-System calls		MS Teams, PPT, Khami Graph Editor	
2	Week 2 (3 Classes)	Class II: Operations on process-Cooperating processes Class III: Process Concept	MS Teams, PPT, Khami Graph Editor	
3	Week 3 (3 Classes)	Class I: Inter-process communication Class II: Process scheduling Class III Scheduling algorithms	MS Teams, PPT, Khami Graph Editor	
4	Week 4 (3 Classes)	Class I: Threads Class II: Multithreading models Class III: Process synchronization- critical- section problem	MS Teams, PPT, Khami Graph Editor	
5	Week 5 (3 Classes)	Class I: Synchronization hardware Semaphores Class II: Classic problems of synchronization critical regions Class III Monitors	MS Teams, PPT, Khami Graph Editor	
6	Week 6 (3 Classes)	Class II: Deadlock- Deadlock characterization Class II: Methods for handling deadlocks Class III: Recovery from deadlock	MS Teams, PPT, Khami Graph Editor	
7	Week 7 (3 Classes)	Class I: Memory management-Buddy system Class II: Paging-segmentation-Virtual Memory Demand paging Class III: Page replacement algorithms Allocation of frames	MS Teams, PPT, Khami Graph Editor	
8	Week 8 (3 Classes)	Class I: Thrashing-Working set model Class II: Files and Directories Class III: Files System structure	MS Teams, PPT, Khami Graph Editor	
9	Week 9 (3 Classes)	Class I: Implementation File allocation methods Class II: Free space management Class III: Virtualization Containers	MS Teams, PPT, Khami Graph Editor	
10	Week 10 (3 Classes)	Class I: I/O systems Class II: I/O interface Class III: Kernel I/O subsystem	MS Teams, PPT, Khami Graph Editor	

Page 3 of 5

		Class I: Disk scheduling algorithms	
11	Week 11 (3 Classes)	Class II: - Disk management	MS Teams, PPT, Khami
		Class III: Swap space management.	Graph Editor
	7	Class I: Protection and security	
		Class II: -Case Study-Linux, Windows	
12	Week 12 (3 Classes)	Class III: , Mac OS and Mobile OS	MS Teams, PPT, Khami Graph Editor

COURSE ASSESSMENT METHODS

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	Cycle Test 1	As per Academic	1 hr	25
2	Cycle Test 2	Schedule	1 hr	25
3	Assignment	4 th Week, 7 th Week, and 9 th week	-	20
4	Compensation Assessment	As per Academic	1 hr	25
5	Final Assessment	Schedule	2 hrs	30

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

COMPENSATION ASSESSMENT

One compensation assessment for absentees in assessments (other than final assessment) is mandatory. Only genuine cases of absence shall be considered.

ACADEMIC DISHONESTY & PLAGIARISM

- Zero marks to be awarded for the offenders. For copying from another student, both students get the same penalty of zero marks.
- The departmental disciplinary committee including the course faculty member,
 PAC chairperson and the HoD, as members shall verify the facts of the malpractice
 and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

The above policy against academic dishonesty shall apply to all the programmes.

ADDITIONAL INFORMATION

NIL

Course Faculty CC-Chairperson CMC12121HOD & SE