

Name of the programme and specialization	M.TECH. DATA ANALYTICS			
Course Title	REAL TIME SYSTEMS			
Course Code	CS618	No. of Credits	03	
Course Code of Pre- requisite subject(s)	os			
Session/Semester	January 2022/ II Semester	Section (if, applicable)	-	
Name of Faculty	B. SHAMEEDHA BEGUM	Department	CSE	
Official Email	shameedha@nitt.edu	Telephone No.	0431-2503215	
Name of Course		1		
Coordinator(s)	_			
(if, applicable)				
Official E-mail	-	Telephone No.	-	
Course Type (please tick appropriately)	Core course Elective course			
Syllabus (approved in BoS)				

Unit – I

Introduction to real-time computing - Structure of a real-time system - Characterization of real-time systems and tasks - Performance measures.

Unit – II

Task Assignment and Scheduling - Uniprocessor scheduling algorithms - Task assignment - Mode changes - Fault tolerant scheduling.

Unit – III

Real-time Communication - Network topologies and architecture issues - Protocols - Contention-based, token-based, polled bus - Fault tolerant routing.

Unit - IV

Real-time Databases - Transaction priorities and aborts - Concurrency control issues - Scheduling algorithms - Two-phase approach to improve predictability.

Unit - V

Programming Languages and Tools - Hierarchical decomposition - Run-time error handling - Overloading - Timing specification - Recent trends and developments.

COURSE OBJECTIVES

- To study issues related to the design and analysis of systems with real-time constraints.
- To learn the features of Real time OS.
- To study the various Uniprocessor and Multiprocessor scheduling mechanisms.
- To learn about various real time communication protocols.
- To study the difference between traditional and real time databases

MAPPING OF COs with POs

Course Outcomes	Programme Outcomes (PO) (Enter Numbers only)
 Knowledge about Schedulability analysis. 	1, 2
Ability to learn Real-time programming environments.	3, 4, 5
 Knowledge about real time communication and databases. 	6,8
Ability to develop real time systems.	6,8

COURSE PLAN - PART II

COURSE OVERVIEW

The course addresses basic concepts of real-time systems, presents examples of real-time systems, covers real-time systems analysis and design, and gives an in-depth treatment of timing analysis and scheduling. The course is organized around the issue of real-time requirements and their impact on the architecture of a system. The considered system domain will be networked embedded. Topics include the description/application of real time systems, system architectures, programming concepts, inter-process communication and synchronization, real-time databases, and design methodology. Applications will be introduced using appropriate programming models or simulation tools.

COURSE TEACHING AND LEARNING ACTIVITIES ((Add more rows))
---	------------------	---

S.N o.	Week/Contact Hours	Topic	Mode of Delivery(Online)
1	1 /1	Train de die a de med dinne en de me	
1	1/1	Introduction to real-time systems	
2	1/1	Structure of a real-time system	
3	1/1	Characterization of real-time systems	
4	2/1	Tasks	
5	2/1	Performance measures	
6	2/1	Performance measures	
7	3/1	Uniprocessor scheduling algorithms	PPT
8	3/1	Uniprocessor scheduling algorithms	
9	3/1	Uniprocessor scheduling algorithms	
10	4/1	Problems	
11	4/1	Task assignment	

12	4/1	Problems	
13	5/1	Mode changes	
14	5/1	Fault tolerant scheduling	
15	5/1	Fault tolerant scheduling	
16	6/1	Problems	
17	6/1	Network topologies	PPT
18	6/1	Architecture issues	
19	7/1	Protocols	
20	7/1	Contention-based	
21	7/1	Token-based	
22	8/1	Polled bus	
23	8/1	Problems	
24	8/1	Fault tolerant routing	
25	9/1	Transaction priorities	
26	9/1	Aborts	
27	9/1	Problems	
28	10/1	Concurrency control issues	
29	10/1	Scheduling algorithms	
30	10/1	Problems	
31	11/1	Scheduling algorithms	
32	11/1	Two-phase approach to improve	
		predictability	
33	11/1	Hierarchical decomposition	
34	12/1	Run-time error handling	
35	12/1	Overloading	
36	12/1	Timing specification	
37	13/1	Recent trends and developments	
38	13/1	Problems	
39	13/1	Discussions	

COURSE ASSESSMENT METHODS (shall range from 4 to 6)

S. No.	Mode of Assessments	Week / Date	Duration	% Weightage
1.	Cycle Test – 1-Online	As per Schedule	1 Hr	30
2.	Cycle Test – 2 -Online	As per Schedule	1 Hr	30
3.	Assignment -1	Mid-week of April	1 Week	10
СРА	Compensation Assessment *For absentees in CT1 or CT2	As per Schedule	1 Hr	30
5.	Final Assessment -Online		2 Hours	30%

HUCHIRAP				
			Total	100%
COUR		ention the ways in whic	the feedback ab	oout the course shall be
	 Online feedba Live feedback 			
COUF	RSE POLICY (including	compensation assessm	nent to be specified	1)
Email COMF	correspondence is pref			equired.
	NDANCE POLICY :NA			
ACAL	EMIC DISHONESTY	<u>R PLAGIARISM</u>		
>		phone, carrying bits of passement will be treated a	•	er students, copying from onesty.
>		arded for the offenders e penalty of zero mark.	. For copying from	n another student, both
>	chairperson and the H	loD, as members shall v	erify the facts of the	e faculty member, PAC e malpractice and award all be submitted to the
>			/ shall be applicable	e for all the programmes.
ADDI	TIONAL INFORMATIO	N, IF ANY		
		Ity to clarify their doubts	s in person any time	e during working hours.
FOR A	APPROVAL			_
Bio	Shamelle	_	D_{α} , ∞ ,	1.8
Cours	se Faculty	CC- Chairperson	Res &	_ HOD