NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI-620015 DEPARTMENT OF CHEMICAL ENGINEERING COURSE OUTLINE

Course Title	INTRODUCTION TO CHEMICAL ENGINEERING						
Course Code	CLIRBS101	No. of Credits	L	Т	Р	С	
			2	0	0	2	
Department	Chemical Engineering	Faculty	Dr. P.Kalaichelvi				
Course Coordinator(s) (if, applicable)	Dr.P.Kalaichelvi						
Other Course Teacher(s)/Tutor(s) E-mail	-	Telephone No.	. 0431-2503110				
Course Type	Institute Requirement						

COURSE OVERVIEW

This course is offered in first semester and with objective of understanding general idea about chemical engineering and its principles

COURSE OBJECTIVES

To give a comprehensive knowledge on various aspects practiced in chemical engineering To get an idea about the sources of information on chemical engineering related topics.

COURSE OUTCOMES (CO) Upon completing the course, the student will be able to

CO1	und	oratond	chami	cal eng	ineerir	o prine	inles									
CO2	acquire the capability to apply basic physics and chemistry principles in chemical engineering															
	the life of the mass and aparay balance in chemical engineering															
CO3	integrate the data and formulate the mass and energy balance in chemical engineering															
CO4	integrate mathematical knowledge for solving chemical engineering problems															
	POI	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO11	PO12	PSO1	PSO2	PSO3	
	PUI	F02	105	104	10.5				2	0	2	2	1	1	1	
CO1	1	1	1	3	3	3	3	3	3	3	3	3		1		
CO2	2	2	1	3	3	1	3	3	3	1		3	1	1	1	
<u>C03</u>	2	2	1	3	3	3	3	3	3	1	2	3	2	1	2	
C04	2	2	1	3	3	1	3	3	3	1	2	3	2	1	2	
S No	No Week Topic Mode of De										of Del	ivery				
1										Chalk & Talk						
1	vv		Over	Overview of chemical Engineering									and Tal			
2	W	eek I	Introduction to Unit Operations PPT & Chalk and Tal													
3	Week 2 Introduction to Unit Processes PPT & Chalk a									and Tall						
4	W	eek 2	Dev	Development of Process Flow Sheeting PPT & Chalk and Ta									and Tal			
5	W	eek 3	Phys	Physio-Chemical Calculations-I Cl									Chalk and Talk			
6	W	eek 3	Phy	Physio-Chemical Calculations-II Chalk and Talk									alk			
7	W	eek 4	Tute	Tutorial Problem solving and discussion Ch									Chalk	Chalk and Talk		
8	W	/eek 4	Car	PPT & Ch									& Chal	k and T		
0		Took 5	Con	iserval				offlor	v of El	uide I			DDT	& Cha	lk and T	
9	W	veek 5	Prir	nciples	and A	Applica	ations			ulus-l	Y					
10	V	Veek 5	Principles and Applications of flow of Fluids-II PPT & Chalk and T													

13		Cycle TEST-I	
11	Week 6	Tutorial Problem solving and discussion	Chalk and Talk
12	Week 6	Principles and Applications of particle Mechanics-I	PPT & Chalk and Talk
13	Week 7	Principles and Applications of particle Mechanics-I	PPT & Chalk and Talk
14	Week 7	Tutorial Problem solving and discussion	Chalk and Talk
15	Week 8	Principles and Applications of Heat transfer-I	
16	Week 8	Principles and Applications of Heat transfer II	PPT & Chalk and Talk
17	Week 9	Tutorial Problem solving and discussion	PPT & Chalk and Talk
18	Week 9	Principles and Applications of Mass two C	Chalk and Talk
19	Week 10	Principles and Applications of Mass transfer-I	PPT & Chalk and Talk
20	Week 10	Principles and Applications of Mass transfer-II	PPT & Chalk and Talk
21	Week 11	Principles and Applications of Mass transfer-III	PPT & Chalk and Talk
21	week 11	Tutorial Problem solving and discussion	Chalk and Talk
		Cycle TEST -II	
22	Week 11	Chemical Reaction Kinetics	PPT & Chalk and Talk
23	Week 12	Concepts of Scale up	PPT & Chalk and Talk
24	Week 12	Modeling and Simulation Techniques in Chemical	PPT & Chalk and Talk
		Processes-1	
25	Week 13	Modeling and Simulation Techniques in Chemical	PPT & Chalk and Talk
		Processes-II	
26	Week 13	Significance of Chemical Engineering in Food, Health	PPT & Chalk and Talk
		Energy and Environment	
27	Week 14	Case studies: State of the Art Technology in	PPT & Chalk and Talk
		Chemical Industries	
28	Week 14	Tutorial Problem solving and discussion	Chalk and Talk
29	Week 15	Overview of ideas learnt in this course	PPT & Chalk and Talk
		Compostor Promingtion	
		Semester Examination	

Sy

5

COURSE ASSESSMENT METHODS

S.No.	Mode of	Week/Date	Duration	% Weightage
	Assessment			
1	I cycle test	5 th week since	1 hour	25%
		commencement		
2	II cycle test	10 th week since	1 hour	25%
		commencement		
3	Retest (Only for	10 th week since	1 hour	25%
	Absentees)	commencement		
4	Assignment	Any time		10%
5	Series of Home	As per the		5%
	work submissions	scheduled time		
		during the		
		class		
6	Class Attendance			5%
5	End semester	16 th week since	2 hour	30%
	examination	commencement		

ESSENTIAL READINGS : Textbooks, reference books Website addresses, journals, etc

- 1. S. K. Ghosal, S. K., Sanyal and S. Datta, Introduction to Chemical Engineering, TMH Book
- 2. Anderson L. B. and L. A. Wenzel, Introduction to Chemical Engineering, McGraw Hill

COURSE EXIT SURVEY (mention the ways in which the feedback about the course is assessed and indicate the attainment also)

- 1) Feedback is planned to be collected twice; once in the mid semester and one at the end of course as soon as classes are over.
- 2) The academic performance of the students will be assessed based on 2 cycle tests (each 25 marks), one final examination (30 marks), assignment (10 marks), Homework submissions (5 marks) and Attendance (5 marks).
- 3) Suitable mapping of Cos with Pos will be made and attainment will be calculated.
- 4) Reassessment after the declaration of end sem result will be conducted for those candidates who failed in the course or those who were absent in end sem assessment test on medical ground

COURSE POLICY (including plagiarism, academic honesty, attendance, etc.)

1) It is expected that the students will not indulge in any form of malpractice in Examinations. Attendance of 75% and above is expected. The 25% allowance is given for absence due to illness/institute related activities (sports/competitions/seminars etc.)

ADDITIONAL COURSE INFORMATION

eg.: The Course Coordinator is available for consultation at times that are displayed on the coordinator's office notice board. Queries may also be emailed to the Course Coordinator directly at kalai@nitt.edu

FOR SENATE'S CONSIDERATION

Course Faculty Olice

CC-Chairperson (

Talk