

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

DEPARTMENT OF ARCHITECTURE

	COURSE PLAI	N – PART I							
Name of the programme and specialization	M. Arch. (Energy Efficient and Sustainable Architecture)								
Course Title	BUILDING ENERGY ANALYSIS STUDIO								
Course Code	AR 709	No. of Credits	3						
Course Code of Pre- requisite subject(s)	NONE								
Session	July 2022	Section (if, applicable)	A / B (NOT APPLICABLE)						
Name of Faculty	Dr. G. Subbaiyan	Department	ARCHITECTURE						
Email	subbaiah@nitt.edu	Telephone No.	04312503557						
Name of Course Coordinator(s) (if, applicable)	NONE								
E-mail		Telephone No.							
Course Type	Core course	Elective cou	irse						
Syllabus (approved in									
Exploration of a range of	f analytical and design tool	s. Understanding of c	apabilities of limitations of						
	energy analysis tools. Tools to be explored - Solar shadow modeling tools, heat flow analysis,								
light simulation tools, mod	eling of ventilation, fire dyna	amics, sizing of passive	e solar features, estimation						
of energy conservation. S	tudio projects involve the de	esign and evaluation of	of buildings to demonstrate						
energy analysis and efficiency of building designs.									
COURSE OBJECTIVES									
The course attempts to	-								
	h to understand climate data								
	lying the design of shading d								
Architectural desig	ious commonly available sof	tware tools to evaluate	the performance of						
	ous sustainable design and s	sizing mechanisms such	as RWH. Water						
recycling, water treatment, solar panels, Waste recycling, etc into architectural design.									
Provides opportunities to apply Heat transfer concepts and terminology through software tools									
while evaluating the performance of the architectural design.									
COURSE OUTCOMES (CO) Aligned Programme									
Course Outcomes		Outcomes (PO)							
Understanding climate									
Understand the use of various software tools aimed at evaluation of building performance and design.									
Understand and apply Buildings through softv	concepts of Heat transfer ar vare tools	nd Insulation in							
Understand Sustainab Treatment of solid and	le design with respect to wat liquid waste	ter, Rain, Solar, and							

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COURSE PLAN - PART II

COURSE OVERVIEW

The course firms up on the fundamentals of Climate responsive architecture and extends to provide an understanding of various concepts of Building science topics.

COURSE TEACHING AND LEARNING ACTIVITIES

S.No.	Week/Conta	Topic	Mode of Delivery		
1	2 weeks	Project stage 1: Preliminary design and Integration of sustainable elements	Studio design & Literature Review		
2	8 weeks	Project stage 2: Analysis of design using software tools:			
. 2		Climate analysis, Comfort analysis, IMAC			
	1	Tools to evaluate U factor, Insulation, Time-lag, and Decrement Factor			
1		Ecotect shading device design and analysis			
	2	Efficiency of shading device, Radiation, and Sun hour analysis by using Ladybug			
	1	OTTV Calculation			
	1	Comfen tool for façade optimization	-		
3	4 weeks	Project Stage 3: Integration of results and revision of design with GRIHA Project Report			
4	1 week	Review/Evaluation of final work.			

COURSE ASSESSMENT METHODS (shall range from 4 to 6)

S.No.	Mode of Assessment	Week/Date	Duration	% Weightage
1	Assignment 1		3 weeks	15%
2	Assignment 2		2 weeks	10%
3	Assignment 3		4 weeks	30%
4	Assignment 4		4 weeks	15%
CPA	Compensation Assessment*			
5	Final Assessment *		1 week	30%

^{*}mandatory; refer to guidelines on page 4

COURSE EXIT SURVEY (mention the ways in which the feedback about the course shall be assessed)

The survey may be conducted by NITT as per practice at the time of registration for final examination

COURSE POLICY (preferred mode of correspondence with students, compensation assessment policy to be specified)

MODE OF CORRESPONDENCE (email/ phone etc):

A detailed program and project brief detailing various stages and tasks have been circulated in the first week.

Assignments will be explained in the class, and students are required to make note of the same. In addition, communication will be made through the class representative and/ or email. Expert lectures will be held to introduce software tools.

NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI

COMPENSATION ASSESSMENT POLICY: For genuine delay in assignment submission, extra time will be given. Otherwise, 10 to 30% of marks will be cut for late submission.

ATTENDANCE POLICY (A uniform attendance policy as specified below shall be followed)

- > At least 75% attendance in each course is mandatory.
- A maximum of 10% shall be allowed under On Duty (OD) category.
- > Students with less than 65% of attendance shall be prevented from writing the final assessment and shall be awarded 'V' grade.

ACADEMIC DISHONESTY & PLAGIARISM

- Possessing a mobile phone, carrying bits of paper, talking to other students, or copying from others during an assessment will be treated as punishable dishonesty.
- Zero marks are to be awarded to the offenders. For copying from another student, both students get the same penalty of zero marks.
- > The departmental disciplinary committee, including the course faculty member, PAC chairperson, and the HoD, as members, shall verify the facts of the malpractice and award the punishment if the student is found guilty. The report shall be submitted to the Academic office.

ADDITIONAL INFORMATION

A minimum of 30% should be scored in the final assessment (for all courses) for a pass. The passing minimum for all the courses shall be the maximum of 35% or the Class Average/2

The following books will be useful in addition to working literature about software tools.

- Handbookook on Energy Conscious Buildings: By J.K. Nayak, MNRE 2006
- 2. Introduction to Architectural Science: The Basis of Sustainable Design: by Steven V. Szokolay; Elsevier Ltd., 2008
- 3. A Handbook of sustainable building design and engineering: An Integrated approach to energy, Health, and Operational performance: By Dejan Mumovic and Matt Santamouris.
- 4. Designing Rainwater Harvesting systems: Integrating rainwater into Building systems: By Celeste Allen Novak, Eddie Van Giesen and Kathy M Debusk, Wiley & Sons, 2014.
- 5. GRIHA volume 1, TERI, India

FOR APPROVAL

Course Faculty CC-Chairperson HOD 550